Argonne National Laboratory

MVT Accounting Routine for Release 17 of OS/360

by

David R. Snider

The facilities of Argonne National Laboratory are owned by the United States Government. Under the terms of a contract (W-31-109-Eng-38) between the U. S. Atomic Energy Commission, Argonne Universities Association and The University of Chicago, the University employs the staff and operates the Laboratory in accordance with policies and programs formulated, approved and reviewed by the Association.

MEMBERS OF ARGONNE UNIVERSITIES ASSOCIATION

The University of Arizona
Carnegie-Mellon University
Case Western Reserve University
The University of Chicago
University of Cincinnati
Illinois Institute of Technology
University of Illinois
Indiana University
Iowa State University
The University of Iowa

Kansas State University
The University of Kansas
Loyola University
Marquette University
Michigan State University
The University of Michigan
University of Minnesota
University of Missouri
Northwestern University
University of Notre Dame

The Ohio State University
Ohio University
The Pennsylvania State University
Purdue University
Saint Louis University
Southern Illinois University
University of Texas
Washington University
Wayne State University
The University of Wisconsin

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

Printed in the United States of America
Available from
Clearinghouse for Federal Scientific and Technical Information
National Bureau of Standards, U. S. Department of Commerce
Springfield, Virginia 22151
Price: Printed Copy \$3.00; Microfiche \$0.65

ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue Argonne, Illinois 60439

MVT Accounting Routine for Release 17 of OS/360

by

David R. Snider

Applied Mathematics Division

July 1970

TABLE OF CONTENTS

			Page
ABSTRA	ст		. 5
I.	INTRODUCTION		. 5
II.	MESSAGES		. 5
III.	SYSTEM REQUIREMENTS		. 8
IV.	DEFINITION OF STATISTICS		. 9
	1. CPU Time		. 9
	2. Voluntary Wait Time		. 9
	3. Requested Region Sizes		
	4. SIO's and EXCP's		
	5. WAIT Count		
	6. Actual Amount of Main Core and Large Capacity Storage		
	7. Recommended Time Estimate		10
			10
v.	TIME ESTIMATES	• •	. 12
VI.	"TIME LEFT" ROUTINE		. 12
VII.	APPLYING THE ACCOUNTING ROUTINE TO THE SYSTEM		. 13
VIII.	STAND-ALONE OS CONSIDERATIONS		. 13
APPEND	IXES		
	A Dischart of the Assesstics Doubies		. 14
	A. Flowchart of the Accounting Routine		
	B. Listing of the Accounting Routine		A 2 CAMBER
	C. Listing of OS Modifications		. 25
	D. Listing of the "Time Left" Routine	•	. 28
REFERE	NCES		. 29

MVT ACCOUNTING ROUTINE FOR RELEASE 17 of OS/360

by

David R. Snider

ABSTRACT

This is a description of the Accounting Routine used on the System/360 Model 75 running under Multiprogramming with a Variable Number of Tasks (MVT), Release 17, at Argonne National Laboratory. It includes the definitions of all statistics gathered, a description of how to apply the routine to the system, and listing of the Accounting Routine and all system modifications.

I. INTRODUCTION

OS/360 includes provisions for a user-written accounting routine. The CSECT name for this routine is IEFACTRT. The IBM System/360 Operating System Programmer's $Guide^1$ describes the data passed by OS to an accounting routine and how such a routine is implemented. This information is essential for a full understanding of this report.

Argonne's Model 75 is supported by a Model 50 running under the Attached Support Processor (ASP). The two machines are connected by a Channel-to-Channel Adapter. The accounting routine passes information to ASP via Write-to-Operator instructions. ASP puts the user information in each job's SYSMSG file, and uses the amount of main core storage and Large Capacity Storage (LCS) requested and the CPU and Voluntary Wait (I/O) times (defined in Section IV) to calculate the number of charge units for the job. ASP also uses the time estimates (defined in Section V), along with other information, to schedule jobs to be run on the 75.

It was apparent, when MVT was first implemented at Argonne, that more than the information made available by OS would be required. Information was needed by ASP to calculate the charge for a job. The users needed to know the amounts of Main Core Storage and LCS they were actually using, and the amounts of CPU and I/O time taken to execute each step and job. Also, the Computer Center needed information to analyze system efficiency and jobstream attributes. The scope of the user accounting routine was therefore extended beyond that provided by IBM.

II. MESSAGES

The accounting routine's main function is to calculate and record statistics. The routine uses four messages to pass statistics from each job and job step to the support processor and to the SYS1.ACCT data set on the main processor IPL pack.

Message ACCT004 is issued at step initiation. It is used to record the job name, step name, and initiation time on the main processor of each job step. Since this message contains no user information, it is written only on SYS1.ACCT.

Messages ACCT002 and ACCT003 contain most of the user statistics and are sent to both the support processor and SYS1.ACCT. Both these messages are issued at step termination.

Message ACCT001 is issued at job termination. This message records total CPU and WAIT times for the job and is sent to the support processor and to SYS1.ACCT.

Examples of the messages are shown in Fig. 1. The first group of messages shows what appears in the SYSMSG file of a user's output. The second group shows the way the messages are written into the SYS1.ACCT data set. The messages have a time stamp added to the end to indicate the exact time that they are written on SYS1.ACCT.

Each message begins with the message number and the job name for which it was issued. This is followed, for all messages except ACCT001, by the step name. The format of the remainder of each message is described below. The meaning of each statistic and the method used to calculate it are explained in the Section IV, "Definition of Statistics." All numbers are decimal unless specified otherwise.

Message ACCT002 contains the CPU and Voluntary Wait times in minutes, seconds, and hundredths of a second. Up to five digits are printed for minutes; any job longer than that will have the high order digits truncated.

RQST in ACCT002 stands for Requested Regions. The regions requested in hierarchy 0 (Main Core Storage) and in hierarchy 1 (Large Capacity Storage) are given in number of K (1024 bytes) of storage.

The end of message ACCT002 has a twelve-digit field of hexadecimal numbers. The first four digits represent the CPU time for the step in hundredths of a second. The fifth through the eighth digits represent the Voluntary Wait time in hundredths of a second. The ninth and tenth digits contain the number of K requested in main core. The eleventh and twelfth digits contain the number of K requested in LCS. This information is used by ASP to calculate the number of charge units for a job.

SIO, EXCP, and WAIT are the number of start I/O instructions issued, the number of SVC O's, and the number of SVC 1's, respectively. These numbers are allowed a maximum of five digits each; anything more than that is truncated at the high end.

USED in ACCT003 stands for the actual amount of core used in each region. HO and H1 used are represented in number of K.

Message ACCT001 contains the TOTAL CPU and TOTAL WAIT times for this job. These totals should be equal to the sum of the CPU and the Voluntary Wait times for all the steps. This message also contains the recommended time estimate for the job.

	LIB01172/ASM LIB01172/ASM		CPU SIO	. 5.40 1439 EXCP	WAIT 934 WAIT			200K,H1 200K,H1	OK OK
	LIBO1172/LINK LIBO1172/LINK		CPU SIO	. 1.07 8.5 EXCP	WAIT 563 WAIT	. 12. 0 1 535		200K,H1 130K,H1	OK OK
R=ACCT003	LIB01172/LINK LIB01172/LINK LIB01172 TOTAL	:	CPU SIO	. 1.02 895 EXCP . 7.49 TO	652 WAIT	621	0H	200K,H1 130K,H1 EST	OK OK
				/ \					

(a)

ACCT004 LIB01172/ASM	STEP INITIATED		7001109184888
ACCT002 LIB01172/ASM	CPU . 5.50 WAIT	. 14.64 RQST HO 200K,H1	OK 7001109191657
ACCT003 LIB01172/ASM	SIO 1451 EXCP 934 WAIT	757 USED HO 200K,H1	OK 7001109191657
ACCT004 LIB01172/LINK	STEP INITIATED		7001109191706
ACCT002 LIB01172/LINK	CPU . 1.13 WAIT	. 20.56 RQST HO 200K,H1	OK 7001109194302
ACCT003 LIB01172/LINK	SIO 1088 EXCP 606 WAIT	575 USED HO 130K,H1	OK 7001109194302
ACCT004 LIB01172/LINK	STEP INITIATED		7001109194339
ACCTO02 LIB01172/LINK	CPU . 1.17 WAIT	. 22.40 RQST HO 200K,H1	OK 7001109201267
ACCT003 LIB01172/LINK	SIO 1182 EXCP 659 WAIT	629 USED HO 130K,H1	OK 7001109201267
ACCTOO1 LIB01172 TOTAL CPU	. 7.80 TOTAL WAIT	. 57.60 TIME EST 2	7001109201284
	(b)		

Fig. 1. Typical accounting messages as they appear in (a) SYSMSG, (b) SYS1.ACCT

III. SYSTEM REQUIREMENTS

The accounting routine requires about 2000 bytes of core storage each time it is loaded. Because the routine is part of each Initiator, the amount of core required by each Initiator to execute is increased. the amount of core required by each Initiator to execute is increased. Each Initiator uses 212 bytes of System Queue Space for a register save area and for space to build messages. This SQS is freed before the jobatep gets control and, of course, all the dynamic area core used by each Initiator is freed also.

A work area of 40 bytes is needed for each Initiator. The Initiator gets core for the work area from SQS at job initiation and keeps it until job termination. The work area is used to hold the statistics for the job step as they are gathered. Its format is

0	SIO Count EXCP Count				
8	Wait Count	Volunary Time for			
16	Actual Core Used	tual Core Used Actual LCS Used			
24	Voluntary Wait Time for Job	Modified Time for			
32	Modified Wait Time for Job	Cell EXCP's Pending	Disk EXCP's Pending		

Several parts of the Nucleus were modified in order to gather statistics. The Getmain routine (IEAQGM00) was modified to calculate minimum free space, which is used to find actual core and LCS used. The Trace routine (IEAQTRCE) was changed in two places, the first to count SIO's and the second to count EXCP's. The Post Routine (IGC002) was modified to count waits, keep track of voluntary wait time, and add this time to CPU time for time limits. The Time Left routine requires that the TTIMER routine (IGC046) be slightly modified. All these changes require only 372 bytes to be added to the size of the Nucleus.

Auxiliary storage is required for SYS1.ACCT. The DCB for SYS1.ACCT is (RECFM=F,LRECL=96,BLKSIZE=96). One 2314 cylinder can accommodate 720 blocks of 96-bytes. SYS1.ACCT was allocated 15 cylinders on SYSRES, and will hold statistics for 1080 compile-load-go jobs. The contents of SYS1.ACCT are dumped and the data set is scratched and reallocated once per day, using IEBPTPCH and IEHPROGM.

IV. DEFINITION OF STATISTICS

The methods used for finding values of the statistics need explanation since several of them allow a number of different possible interpretations. The method of calculating each value is described below.

1. CPU Time

CPU time is the sum of the time intervals during which the step controls the CPU. This means that whenever the job step TCB or a sub-task TCB is the current TCB in the system (the one in control) the time is charged to that step.

OS/360 makes CPU time for each step available at step termination and CPU time for each job available at job termination, if the job step timer option is taken at System Generation. 1 , 2

OS calculates the CPU time for a step by taking the time estimate for the step from the Step Control Table at step initiation and building a Timer Queue Element (TQE) with that value by issuing a STIMER (SVC 47). The value in the TQE is decremented for each interval during which the step is not in Wait state. At step termination the value in the TQE is subtracted from the value in the Step Control Table to yield the CPU time for the step.

2. Voluntary Wait Time

A job step is considered to be in a voluntary wait state between the time the entire step goes into the wait state and the time it again becomes dispatchable. In the simplest instance, a job step with no subtasks, this is the time between the issuance of a Wait SVC and the posting of the Event Control Block. This method allows charging a user for the time he spends doing I/O without charging him for the time he spends waiting for another job while he is dispatchable.

Wait time is calculated with a modification to the POST Routine (SVC 2). Each time the entire step goes into a wait, the value in the TQE is saved and a number representing the time limit for waits in timer units is put in its place. When the wait is posted and the step becomes dispatchable again, the length of the wait is added to a counter in the accounting work area for the step. The counter is for step wait time and is zeroed at step initiation.

Each voluntary wait currently has a time limit of thirty minutes, after which the job is abnormally terminated. If it becomes desirable, this time limit can be changed.

3. Requested Region Sizes

Every job step run on the main processor requests, either explicitly or implicitly, a certain amount of Main Core Storage and a certain amount of Large Capacity Storage. The values requested are stored in the Step Control Table for each job step. The accounting routine copies the values from the Step Control Table and records them.

4. SIO's and EXCP's

The number of Start Input/Output instructions (SIO's) and Execute Channel Program SVC's (EXCP's) recorded by the accounting routine are measures of the I/O activity of a job step. EXCP's are requests for the EXCP Supervisor to perform some I/O function. SIO's are issued by the EXCP Supervisor and are the actual operations required to perform the requested I/O. Each SIO and EXCP is counted when it is recorded in the Trace Table. The totals are kept in work counters in the work area.

5. WAIT Count

A total is kept of the number of times the whole job step is in the Wait state. This is a count of the intervals whose durations are added together to calculate Wait Time. The total is kept in a one-word counter in the work area.

6. Actual Amount of Main Core and Large Capacity Storage

The Core and LCS used are calculated by subtracting the minimum free core or LCS in a requested region from the region size requested for a job step. An example is shown in Fig. 2. In this example, core used = 200K - 50K = 150K.

This statistic usually makes a good value to use for region size the next time the job is run. However, core fragmentation can present a problem (Fig. 3). Although the core used in Fig. 3 is 200K-50K=150K, the fragmentation necessitates a region request of 200K to run the job step. The value 150K is still useful even in this case: It can be used by the programmer as the smallest region size possible, if he eliminates the fragmentation.

More specifically, the amount of storage used is calculated by adding up all the Free Block Queue Elements for the Partition Queue Element each time a Getmain is issued. This sum is compared to the current value in either the Actual CPU Used field or the Actual LCS Used field of the work area. If the new sum is smaller than the value in the work area, the new sum replaces the work area value. These work area fields are initialized at step initiation with the number of bytes of storage requested in each of the two kinds of storage. The requested region sizes in K are stored by OS in the Step Control Table, and these values are multiplied by 1024 to get the number of bytes requested.

7. Recommended Time Estimate

The time estimate in message ACCT001 is calculated by subtracting the time remaining for the job in the Timer Queue Element from the time estimate used on the job card, adding 10 seconds, and rounding to the next higher minute. It is the recommended time estimate for the job. This is the value that should be used on the job card the next time the job is run. Refer to Section V for more information on time estimates.

Fig. 2. Determination of core usage without core fragmentation

Fig. 3. Determination of core usage with core fragmentation

V. TIME ESTIMATES

In addition to its primary function of calculating statistics, the accounting routine causes the fourth field of the accounting information on the job card to be used as a time estimate in minutes for the job. Time specified using the time keyword on an execute card is ignored. The maximum time allowed a job step is the difference between the time estimate from the job card and the total time used by all previous job steps.

This form of step-time limitation is accomplished by replacing the maximum time field in the Step Control Table (SCT) with the above difference at initiation of each step. The SCT is created and the maximum time filled in from a default specified in the RDR procedure by the Reader/Interpreter. During initiation of the job step, IEFACTRT is entered and the maximum time in the SCT is modified. The last initiator module to get control before the job step is executed is IEFSD263 (the initiator attach routine). It issues the STIMER macro using the maximum time in the SCT, and then attaches the job step. A default job time of three minutes is currently supplied for a job with a blank or omitted time field on the job card.

OS issues the STIMER with the TASK option. This causes the time remaining to be decremented only when the step is using the CPU. When the value reaches zero the job is cancelled for time exceeded. In addition to this, the accounting routine subtracts from the time remaining the wait time for each wait when it is posted. This wait time is modified from the Voluntary Wait Time used for charging. It was found that the actual Voluntary Wait Time for disk and datacell I/O varied too much to use as part of the time estimate, so instead constant values are subtracted from the time remaining for each block (EXCP) read or written to disk or datacell. The constant for disk is 0.03 second, the constant for datacell 0.1 second. The Voluntary Wait Times for disk and cell I/O are added to the total Voluntary Wait Time for the step, but the constants are used instead of the Voluntary Wait Time for decrementing the time remaining for a step. All other Voluntary Wait Times (i.e. for I/O to devices other than disk and cell) are subtracted from the time remaining.

VI. "TIME LEFT" ROUTINE

TLEFT is a FORTRAN and PL/1 callable subroutine. It returns to the calling program the time remaining for the job in hundredths of a second. The routine is called with one dummy argument. The value returned is in single precision, floating point, binary. The value of the argument remains unchanged.

Example: X = TLEFT(Y) causes X to be set equal to the 'TIME LEFT' A listing of the routine appears in Appendix D.

VII. APPLYING THE ACCOUNTING ROUTINE TO THE SYSTEM

The following is a description of the steps necessary to implement this accounting routine. Some of these steps can be taken either before or after System Generation (in slightly different ways, of course), as long as the Stage 1 macros are as specified. This description covers implementation after System Generation.

The SCHEDULR macro for Stage 1 of System Generation must have ACCTRTN=SUPPLIED. This causes the dummy CSECT IEFACTRT and the System Output Writer (IEFWAD) to be included in the Initiator/Terminator.

The SUPRVSOR macro for State 1 must have TIMER=JOBSTEP. This will cause the jobstep timing function to be included.

The dummy CSECT IEFACTRT must be replaced with the accounting routine in both load modules in which it appears. (Refer to the listing of the System Generation Linkage Editor for Linkage Editor parameters and control cards; refer also to "Inserting an Accounting Routine into the Control Program" in Ref. [1].) A listing of the accounting routine that replaces the dummy CSECT appears in Appendix B.

The STAGE II macros IEAQGM and IEAQTR in SYS1.MODGEN must be updated, after which the Stage I assemblies that called these macros must be rerun. The cards that must be inserted in each of these macros are listed in Appendix C.

The POST SVC (IGC002) and the TTIMER SVC (IGC046) must both be reassembled. The source for these modules is in SYS1.CI535, members IEAQSY50 and IEAQST00. The cards that must be inserted in each of these modules are listed in Appendix C.

Space must be allocated for SYS1.ACCT (the DCB and space requirements are discussed in Section III). Reference should also be made to "Output from the Accounting Routine" in Ref. [2].

The four object modules described in the two paragraphs above must all be included in the relinkedit of the Nucleus. When these steps are completed, do an IPL and the accounting routine will be running.

SYS1.ACCT can be output using the Utilities. Scratching and reallocating the data set will reset the pointer that keeps track of which records to use next.

VIII. STAND-ALONE OS CONSIDERATIONS

The Write to Operator commands used by the accounting routine to send messages to ASP would have to be changed on a stand-alone system and a System Output Writer would probably have to be written. An explanation of how to write such a routine appears under "Output from the Accounting Routine" in Ref. [1].

APPENDIX A
Flowchart of the Accounting Routine

Flowchart of the Accounting Routine (Contd.)

(Contd.) Flowchart of the Accounting Routine Getmain for Message and Move in Blank Are Flags in Form for ACCT002 FCBUSER Field Move Job and Step Names to Message from JCT and SCT Move Binary Region Sizes from SCT to Message Trailer Get Wait Time and Convert it to Hundredths of a Second Subtract Wait Time from CPU & Wait Store Binary CPU Time in Message Add Wait Time for this Step to Job Total Get Voluntary Wait Time and Convert to Hundredths of a Second Add Voluntary Wait Time to Total for Job Store Binary Voluntary Wait Time in Message Trailer

Flowchart of the Accounting Routine (Contd.)

APPENDIX B

Listing of the Accounting Routine

```
IEFACTRT CSECT
        SAVE (14,12)
        BALR 11,0
        USING *,11
       * * * * * * * * * * * * *
        ON ENTRY TO THIS ROUTINE:
             RO CONTAINS AN ENTRY CODE
             R1 POINTS TO THE ACCOUNTING INFORMATION
            (THE ABOVE ARE EXPLAINED IN THE SYSTEMS PROGRAMMER'S GUIDE)
        THE FOURTH FIELD OF THE ACCOUNT INFO ON THE JOB CARD
    IS TAKEN AS THE MAXIMUM CPU TIME, IN MINUTES, FOR THE ENTIRE
    JOB. JOB RUN TIME IS SUBTRACTED FROM THE TIME ESTIMATE
    AT STEP INITIATION, AND THE RESULT IS THE MAXIMUM RUN TIME
     FOR THAT STEP.
        MESSAGES ARE SENT TO THE 50 AND TO SYS1. ACCT AT STEP
    TERMINATION AND JOB TERMINATION. THESE MESSAGES CONTAIN TOTALS
    FOR THE STEP OR JOB. A MESSAGE IS SENT TO SYSL.ACCT AT STEP
    INITIATION. MESSAGES IN SYS1.ACCT ARE TIME STAMPED.
     REG3 CONTAINS ENTRY CODE
              3.0
        LR
                            REG2 POINTS TO ACCOUNT INFO
        LR
              2,1
        GETMAIN R, LV=72, SP=254
        ST
              13,4(1)
        ST
              1,8(13)
        LR
              13,1
              4,12(2)
        L
              3(4),X'00'
                            IS THIS A SYSTEM TASK
        CLI
                            YES - DON'T SET TIME LIMIT
              SYS
        BE
              6,76(0)
                                 LOAD ADDR OF CVT POINTER
        1
                                 LOAD ADDR OF CVT
              6,0(6)
        L
                                 LOAD ADDR OF TCB
        L
              6,4(6)
        LA
              4,12(0)
                            TEST ENTRY CODE
        CR
              3,4
        BNE
              NOT
        CLI
              168(6), X'FF'
        BNE
              SYS
                                ADDR OF WORKAREA
              9,168(6)
        GETMAIN R, LV=140, SP=254
                                     CORE FOR STEP MESSAGE
        LA
              3,4(0)
        AR
              1,3
              0(87,1), MESSAGE2 PUT BLANK MESSAGE IN MESSAGE AREA
        MVC
        L
              3,0(2)
        MVC
              12(8,1),0(3)
                                 MOVE JOBNAME TO MESSAGE
              3,4(2)
        MVC
              21(8,1),0(3)
                                 MOVE STEPNAME TO MESSAGE
        MVC
              96(4,1),36(3)
                                 MOVE REGION SIZES TO MESSAGE
        L
              3,20(2)
              7,0(3)
                                 PUT STEP CPU+WAIT TIME IN REG7
        L
        SRL
              7,8(0)
        1
              5,28(0,9)
                                 PUT STEP WAIT TIME IN REG5
        SR
              4,4
        LA
              8,385(0)
        DR
              4.8 CONVERT WAIT TIME TO HUNDREDTHS OF A SECOND
        SR
              7,5
                                 SUBTRACT WAIT TIME FROM WAIT+CPU
        ST
              7,88(1)
                                 STORE BINARY CPU TIME IN MESSAGE
        CVD
              7,124(0,1)
                                 CONVERT CPU TIME TO DECIMAL
        A
              5,32(9)
                                 ADD STEP WAIT TIME TO JOB TOTAL
        ST
              5,32(9)
                                 STORE IN WORKAREA
        SR
              4,4
        L
              5,12(0,9)
                                 PUT STEP WAIT CHARGE IN REG5
        DR
             4,8
                                 CONVERT TO HUNDREDTHS OF A SECOND
        L
              6,24(9)
                                 GET JOB TOTAL WAIT CHARGE
```

```
ADD STEP WAIT CHARGE TO JOB TOTAL
 AR
        6,5
        6,24(9)
 ST
                            STORE IN WORKAREA
 ST
        5,92(1)
                            STORE BINARY WAIT CHARGE IN MESSAGE
 LM
       6.7.124(1)
 SRDL
        6,4(0)
 STC
       7,132(1)
                            STORE HUNDREDTHS OF A SECOND
 SRDL
        6,4(0)
 LA
        10,15(0)
 OR
        7,10
 STM
        6,7,124(1)
 CVB
        7,124(0,1)
 LA
        8,60(0)
 SR
       6,6
 DR
       6,8
CVD
      7,124(0,1)
                           STORE MINUTES
        7,128(0,1)
 L
 SRL
       7,4(0)
 ST
       7,128(0,1)
 ED
       33(6,1),130(1)
                            PUT MINUTES IN MESSAGE
 CVD
       6,124(0,1)
       6,128(0,1)
 1
       6,4(0)
 SRL
 ST
       6,128(0,1)
 ED
                            PUT SECONDS IN MESSAGE
       40(6,1),131(1)
 CVD
       5,124(0,1)
                            CONVERT WAIT TIME TO DECIMAL
 LM
       4,5,124(1)
 SRDL
        4,4101
 STC
        5,132(1)
                            STORE HUNDREDTHS OF A SECOND
 SRDL
        4.4(0)
 LA
        10,15(0)
 OR
        5,10
 STM
        4,5,124(1)
 CVB
        5,124(0,1)
 LA
        8,60(0)
 SR
       4,4
 DR
        4,8
 CVD
        5,124(0,1)
                            STORE MINUTES
 1
       5,128(0,1)
 SRL
        5,4(0)
      5,128(0,1)
ST
 ED
       51(6,1),130(1)
                            PUT MINUTES IN MESSAGE
 CVD
       4,124(0,1)
       4,128(0,1)
 SRL
       4,4(0)
 ST
       4,128(0,1)
 ED
       58(6,1),131(1)
                            PUT SECONDS IN MESSAGE
 LH
       8,96(1)
 CVD
       8,124(0,1)
                            PUT HO REQUESTED IN MESSAGE
 ED
       72(4,1),130(1)
       8,98(1)
 LH
CVD
      8,124(0,1)
       8,128(1)
 1
 SRL
       8,4(0)
 ST
       8,128(1)
                            PUT H1 REQUESTED IN MESSAGE
 ED
       80(5,1),130(1)
LR
       10,1
 WTO
       MF=(E,(1))
                            SEND MESSAGE TO 50
 TIME
 SRL
       1,4(0)
 ST
       1,104(0,10)
LR
       1,10
 ST
       0,108(0,1)
MVC
       112(4,1),96(1)
                            SAVE ROSTED REGIONS
```

NOT

```
MVC
       86(14,1), PATTERN
 FD
       86(14,1),105(1)
 LA
       6,4(0)
 SR
       1,6
 LA
       6,96
 STH
       6,6(1)
 L
       15, VCON
 BALR
      14,15
       3,4(0)
 1 4
 AR
       1,3
 MVC
       0(11,1), MESSAGE3
       30(54,1), MESSAGE3+30 PUT BLANK MESSAGE IN AREA
 MVC
       8,0(0,9)
CVD
      8,124(0,1)
                          PUT SIO COUNT IN MESSAGE
       33(6,1),129(1)
 ED
       8,4(0,9)
 L
 CVD
      8,124(0,1)
 ED
       44(6,1),129(1)
                          PUT EXCP COUNT IN MESSAGE
       8,8(0,9)
 CVD
       8,124(0,1)
                          PUT WAIT COUNT IN MESSAGE
 ED
       55(6,1),129(1)
                          LOAD NUMBER OF BYTES OF CORE USED
       8,16(0,9)
 1
                          DIVIDE BY 1024
 SRL
       8.10
 LH
       7,112(1)
 SR
       7,8
 CVD
       7,124(0,1)
                          PUT ACTUAL CORE USED IN MESSAGE
 ED
       72(4,1),130(1)
       8,20(0,9)
                          LOAD NUMBER OF BYTES OF LCS USED
 1
 SRL
                          DIVIDE BY 1024
       8,10
 LH
       7,114(1)
 SR
      7,8
 CVD
      7,124(0,1)
 1
      7,128(0,1)
 SLL
      7,4101
 ST
      7,128(0,1)
      80(5,1),129(1) PUT ACTUAL LCS USED IN MESSAGE
ED
LR
      10,1
WTO
      MF=(E,(1))
                               SEND MESSAGE TO 50
IR
      1,10
MVC
      84(2,1), PATTERN
LA
      6,4(0)
SR
      1.6
1 4
      6,96
STH
      6,6(1)
L
      15.VCON
BALR
      14,15
LR
      1,10
LA
      3,4(0)
SR
      1,3
FREEMAIN R, LV=140, A=(1), SP=254
LR
      1,13
      13,4(1)
FREEMAIN R, LV=72, A=(1), SP=254
RETURN (14,12) IF SO RETURN
ВН
      WTO
                    ENTERED AT JOB TERMINATION
L
      3,28(2)
CLI
      1(3),X'01'
                    IS THIS JOB INITIATION
BE
      JOB
                    THIS IS JOB INITIATION
1
      1.168(6)
                         LOAD ADDR OF WORKAREA
MVC
      0(24,1), WORKAREA
                         INITIALIZE WORKAREA
MVC
      28(4,1), WORKAREA
L
      3,12(2)
      9,0(0,3)
```

```
LOAD JOB RUN TIME INTO REG9
          SRL
                9.8(0)
          B
                JOBC ARD
JOB
          SR
                               JOB RUN TIME IS ZERO
                9,9
                  R.LV=40, SP=255
         GETMAIN
                0(40,1), WORKAREA
         MVC
                                     INITIALIZE WORKAREA
                1. MARKER
         n
          ST
                1,168(6)
                                     STORE ADDR OF WORKAREA IN TCB
          L
                3,12(2)
                5,20(12)
JOBCARD
         L
                                     FIND SCT FROM LCT
                4,88(5)
                                     LOAD CPU REGION SIZE FROM SCT
         LH
                                     MULTIPLY BY 1024
          SLL
                4,10
          ST
                4,16(0,1)
                                     STORE REGION SIZE IN FREE SPACE ACCUM
         LH
                4,90(5)
                                     LOAD LCS REGION SIZE FROM SCT
                                     MULTIPLY BY 1024
          SLL
                4,10
          ST
                4,20(0,1)
                                     STORE REGION SIZE IN FREE SPACE ACCUM
                8,4(0,10)
          SRL
                8,24(0)
          SLL
                8.24(0)
                               GET INTER STEP STATUS INDICATORS
          CLI
                3(31, X'04'
                               ARE THERE 4 ACCOUNT FIELDS
          BNE
                DEFALT
                               NO - DEFAULT TO 3 MINUTES
                3,16(2)
          SR
                4,4
          SR
                5,5
          LA
                5,1(0)
          IC
                4,0(0,3)
                4,5
          ALR
          ALR
                3,4
          IC
                4,0(0,3)
                4,5
          ALR
          ALR
                3,4
          IC
                4,0(0,3)
                4,5
          ALR
                               REG3 NOW POINTS TO C4
          ALR
                3,4
                               IS THE TIME FIELD BLANK
         CLI
                0(3),X'00'
          BE
                DEFALT
                               YES - DEFAULT TO 3 MINUTES
          SR
                6,6
          IC
                4.0(0.3)
                               PUT TIME FIELD BYTE COUNT IN REG4
          SR
                7,7
SHIFT
          ALR
                3,5
                               THIS LOOP TAKES TIME ESTIMATE
          SLDL
                6,8(0)
                               FROM JOB CARD AND PUTS IT IN REG6
          IC
                7,0(0,3)
          BCT
                4, SHIFT
          GETMAIN R, LV=16, SP=254
                6,7,0(1)
          STM
          PACK
                8(8,1),0(8,1)
                               CONVERT TIME EST TO BINARY
          CVB
                7,8(0,1)
          FREEMAIN R.LV=16, A=(1), SP=254
FIRST
         LA
                5,60(0)
         MR
                6,5
                5,100(0)
          I A
                6,5
         MR
                8,7
          AR
          THE TIME EST IN HUNDRETHS OF A SECOND AND THE INTER STEP
          INDICATORS NOW OCCUPY REG8
                               MAXTIME=TIME ESTIMATE - JOB RUN TIME
          SR
                8,9
          BNL
                TIMELEFT
          SR
                8,8
                3,4(2)
TIMELEFT L
         LA
                4,48(0)
                               REG3 NOW POINTS TO THE SCT+4
          SR
                3.4
                               ORIGINAL MAXTIME TO SCT
          ST
                8.0(0.3)
```

```
CODE TO PUT OUT STEP INITIATION MESSAGE
          GETMAIN R.LV=140,SP=254
          LA
                4,4(0)
          AR
                1,4
          MVC
                0(87,1), MESSAGE4
                3,0(2)
                                    MOVE JOBNAME TO MESSAGE
          MVC
                12(8,1),0(3)
                3,4(2)
                                    MOVE STEPNAME TO MESSAGE
          MVC
                21(8,1),0(3)
         LR
                10,1
          TIME
          MVC
                86(14,10), PATTERN
          SRL
                1,4(0)
          ST
                1,104(0,10)
          ST
                0,108(0,10)
                86(14,10),105(10)
          ED
         LR
                1,10
         LA
                6,4(0)
         SR
                1,6
         LA
                6,96
          STH
               6,6(1)
         LR
               6,1
                15,VCON
         1
         BALR 14,15
         LR
               1,6
         FREEMAIN R, LV=140, A=(1), SP=254
SYS
         LR
               1,13
                13,4(1)
         FREEMAIN R, LV=72, A=(1), SP=254
         RETURN (14,12)
DEFALT
         LA
               7,3(0)
                              DEFAULT TIME EST IS 3 MINUTES
               FIRST
*
      SEND JOBNAME AND CPU TIME TO 50 VIA WTO MESSAGE
WTO
               3,0(2)
         CLI
               168(6), X'FF'
         BNE
               SYS
         L
               4,168(6)
         1
               10,32(0,4)
         GETMAIN R, LV=104, SP=254
               6,4(0)
         LA
         AR
               1.6
         MVC
               0(87,1), MESSA GE1
                                   PUT BLANK MESSAGE IN WORK AREA
         MVC
               12(8,1),0(3)
                                   MOVE JOBNAME TO MESSAGE
         L
               3,12(0,2)
         1
               8,0(0,3)
         SRL
               8,8(0)
                              PUT JOB RUN TIME IN REG8
         SR
               8,10
         SR
               6,6
         LR
               7,8
         LA
               9,100(0)
        DR
               6,9
                                   GET CPU+WAIT IN SECONDS
         SR
               6,6
        LA
               9,70(0)
        AR
               7,9
        LA
               9,60(0)
        DR
               6,9
                                   GET CPU+WAIT IN MINUTES
        CVD
               7,84(0,1)
              7,88(0,1)
        L
        SRL
              7.4(0)
```

```
ST
       7,88(0,1)
                           PUT TIME ESTIMATE IN MESSAGE
       76(5,11,90(1)
ED
       8,10
SR
CVD
                           CONVERT RUN TIME TO DECIMAL
       8,84(0,1)
LM
       6,7,84(1)
SRDL
       6,4(0)
STC
       7,92(1)
                           STORE HUNDREDTHS OF A SECOND
       6,4(0)
SRDL
LA
       9,15(0)
OR
       7,9
STM
       6,7,84(1)
CVB
       7,84(0,1)
LA
       8,60(0)
SR
       6,6
DR
       6,8
CVD
       7,84(0,1)
                           STORE MINUTES
       7,88(0,1)
L
SRL
       7.4(0)
ST
       7,88(0,1)
ED
       30(6,1),90(1)
                           PUT MINUTES IN MESSAGE
CVD
       6,84(0,1)
L
       6,88(0,1)
       6,4(0)
SRL
       6,88(0,1)
ST
                           PUT SECONDS IN MESSAGE
ED
       37(6,1),91(1)
       8,24(0,4)
CVD
       8,84(0,1)
                           CONVERT RUN TIME TO DECIMAL
       6,7,84(1)
LM
       6,4(0)
SRDL
                           STORE HUNDREDTHS OF A SECOND
STC
       7,92(1)
       6,4(0)
SRDL
IA
       9,15(0)
       7,9
OR
       6,7,84(1)
STM
       7,84(0,1)
CVB
LA
       8,60(0)
 SR
       6.6
DR
       6,8
                            STORE MINUTES
CVD
       7,84(0,1)
       7,88(0,1)
 SRL
       7,4(0)
       7,88(0,1)
ST
       54(6,1),90(1)
                           PUT MINUTES IN MESSAGE
ED
       6,84(0,1)
CVD
       6,88(0,1)
 SRL
       6,4(0)
ST
       6,88(0,1)
                            PUT SECONDS IN MESSAGE
       61(6,1),91(1)
ED
       9,1
LR
       MF=(E,(1)) SEND MESSAGE TO 50
WTO
 TIME
      1.4(0)
SRL
 ST
       1,100(0,9)
LR
       1,9
 ST
       0,104(0,1)
       86 (14,1), PATTERN
 MVC
ED
       86(14,1),101(1)
LA
       6,4(0)
SR
       1,6
       6,96
LA
       6,6(1)
STH
       15,VCON
1
BALR
      14,15
```

```
1,4
         FREEMAIN R, LV=40, A=(1), SP=255
              1,9
         LR
         LA
               6,4(0)
         SR
               1,6
         FREEMAIN R, LV=108, A=(1), SP=254
         LR
               1,13
               13,4(1)
         L
         FREEMAIN R, LV=72, A=(1), SP=254
         RETURN (14,12)
WORKAREA DS
              OF
         DC
               14F'0"
MARKER
         DC
               XL4 FF0000000
UNITS
               XL4'0023366C'
         DC
PATTERN DC
               CL14'
BLANKS DC
              CL5'
MESSAGE1 WTO
               'ACCTOO1
                                 TOTAL CPU
                                                       TOTAL WAIT
                . . TIME EST
                                     ., MF=L
MESSAGE2 WTO
               ACCT002
                                         CPU
                                                            WAIT
                                         K CCCCWWWWOO11 , MF=L
                . ROST HO
                                K, H1
MESSAGE3 WTO
                                                   EXCP
               *ACCT003
                                         SIO
                                                                WAIT
                                                                         X
                  USED HO
                                       K', MF=L
                              K, H1
MESSAGE4 WTO
                                           STEP INITIATED
               ACCT004
                                            ",MF=L
VCON
         DC
               V(IEFWAD)
         END
```

APPENDIX C

Listings of OS Modifications

Update the Macro IEAQTR with these cards.

```
11, TCB( TRPTRG)
                                                                     ANLACT 06380516
                                    LOAD ADDR OF JOB STEP TCB
                11, 124(11)
                                                                     ANLACT 06381016
                                    LOAD ADDR OF INIT TCB
               11,132(11)
                                                                     ANLACT 06381516
         CLI
               168(11), X'FF'
                                    IS THIS A USER TCB
                                                                     ANLACT 06382016
                                    NO - IT IS A SYSTEM TCB
                *+20
         BNE
                                                                     ANLACT 06382516
                                                                     ANLACT 06383016
               11, 168(11)
                                    LOAD ADDR OF WORKAREA
               12,1
                                                                     ANLACT 06383516
         LA
                12,0(11)
                                   ADD ONE TO SIO COUNT
                                                                     ANLACT 06384016
         A
         ST
                12,0(11)
                                   STORE NEW SIO COUNT IN WORKAREAANLACT 06384516
                13,4(14) LOAD ADDR OF CURRENT TCB
                                                                     ANLACT 07490516
                13,124(13) LOAD ADDR OF JOB STEP TCB
                                                                     ANL ACT 07491016
                            LOAD ADDR OF INIT TCB
                13,132(13)
                                                                     ANLACT 07491516
                              IS THIS A USER TCB
         CLI
                168(13),X'FF'
                                                                     ANLACT 07492016
                                                                     ANLACT 07492516
                POSTCOM
                                    NO - THIS IS A SYSTEM TCB
         BNE
                                                                     ANLACT 07493016
                                    LOAD SVC IDENT AND NUMBER
         LH
                11,2(TRPTRG)
                                                                     ANLACT 07493516
                11,EXCP
                                    IS THIS A SVC O
         BNE
                POSTCOM
                                    NO - BRANCH AROUND
                                                                     ANLACT 07494016
                                   LOAD ADDR OF WORKAREA
                                                                     ANLACT 07494517
         L
                14,168(13)
                                                                     ANL ACT 07495016
         LA
                11.1
                                    ADD OME TO EXCP COUNT
                                                                     ANLACT 07496217
         Δ
                11,4(14)
                                                                     ANLACT 07496317
         ST
                11,4(14)
                                    STORE NEW EXCP COUNT
                11,16(TRPTRG)
                                    LOAD IOB ADDR
                                                                     ANLACT 07496417
                                                                     ANLACT 07496517
                                    LOAD DCB ADDR
                11,20(11)
                11,44(11)
                                    LOAD DEB ADDR
                                                                     ANLACT 07496617
                11,32(11)
                                                                     ANLACT 07496717
                                   LOAD UCB ADDR
                                   IS THIS DIRECT ACCESS
                                                                     ANL ACT 07496817
         CLI
                18(11). X'20'
                                                                     ANLACT 07496917
                                    BRANCH IF NOT
         BNE
                POSTCOM
                                                                     ANL ACT 07497017
         CLI
                19(11), X'08'
                                    IS THIS A 2314
                                                                     ANLACT 07497117
                                    BRANCH IF IT IS
         BE
                DISK
                                                                     ANL ACT 07497217
                19(11), X'05'
                                    IS THIS A 2321
         CLI
                                                                     ANL ACT 07497317
                CELL
                                    IF IT IS BRANCH
         RF
                                          TO CLEAN UP
                                                                            07500000
         BC
                15, POSTCOM
                                                                     ANLACT 07500517
                                    LOAD PENDING DISK EXCP COUNT
DISK
         LH
                11,38(14)
                11, EXCPMAX
                                                                     ANLACT 07501017
                                    IS COUNTER FULL?
         C
                                                                     ANLACT 07501517
                                    YES. DO NOT INCREMENT
                POSTCOM
         BE
                                                                     ANLACT 07502017
                12,1(0)
         LA
                                    ADD ONE TO COUNT
                                                                     ANL ACT 07502517
         AR
                11,12
                                    STORE NEW TOTAL
                                                                     ANLACT 07503017
         STH
                11,38(14)
                                                                     ANLACT 07503517
                POSTCOM
         B
                                    LOAD PENDING CELL EXCP COUNT
                                                                     ANLACT 07504017
CELL
         LH
                11,36(14)
                                    IS COUNTER FULL?
                                                                     ANLACT 07504517
                11, EXCPMAX
                                    YES. DO NOT INCREMENT
                                                                     ANLACT 07505017
         BE POSTCOM
                                                                     ANLACT 07505517
         LA
                12,1(0)
                                                                     ANLACT 07506017
                                    ADD ONE TO OUNT
         AR
                11,12
                                                                     ANL ACT 07507017
                11,36(14)
         STH
                                    STORE NEW TOTAL
                                                                     ANLACT 07507517
         B
                POSTCOM
                                                                     ANL ACT 07509817
EXCP
         DC
                F'8192'
                                                                     ANLACT 07509917
                X * 0000EFFF *
EXCPMAX
         DC
```

Update the Macro IEAQGM with these cards.

GDQEBLD	STM LR L	10,15,SAVEDRS 11,RTCB 11,124(11)	SAVE REGISTERS LOAD ADDR OF CURRENT TCB LOAD ADDR OF JOB STEP TCB LOAD ADDR OF INIT TCB	ANLACT 43531016 ANLACT 43531516 ANLACT 43532016 ANLACT 43532516
	CLI	11,132(11) 168(11),X'FF' LASTPOE+10	IS THIS A SYSTEM TCB YES - BRANCH AROUND	ANLACT 43533316 ANLACT 43533516
	L	14,TCBPQE(11)	LOAD ADDR OF DUMMY PQE-8	ANL ACT 43534016 ANL ACT 43543016

Listings of OS Modifications (Contd.)

```
LOAD ADDR OF FIRST PQE ON CHAINANLACT 43534516
                                                                      ANL ACT 43535016
                14,8(14)
LOOPPOE
         L
                14,0(14)
                                                                      ANLACT 43535516
         LA
                                    LOAD ADDR OF FIRST FBQE ON CHAIANLACT 43536016
         SR
                13,13
                15,0(14)
                                                                      ANL ACT 43536516
         L
         LA
                15,0(15)
                                                                      ANL ACT 43537016
                                    ARE THERE ANY MORE FBQE'S
                                                                      ANL ACT 43537516
                14,15
COUNT
         CR
                                                                      ANL ACT 43538016
         BE
                ALLGONE
                                    LOAD SIZE OF FREE BLOCK
                                                                      ANL ACT 43538516
                12,8(15)
          L
                                     ZERO HIGH ORDER BYTE
                12,0(12)
         IA
                                                                              43539016
                                                                      ANL ACT
                                    ADD SIZE OF BLOCK TO TOAL
                13,12
          AR
                                                                      ANL ACT 43539216
          L
                15,0(15)
                                                                      ANL ACT
                                                                              43540016
                                    LOAD ADDR OF NEXT FBQE
          LA
                15,0(15)
                                                                      ANL ACT 43540516
          B
                COUNT
                                                                      ANL ACT 43541016
SAVEDRS
          DC
                6F .0 .
                                                                      ANL ACT 43541516
ALLGONE
          SR
                12,12
                                                                      ANLACT 43542016
                12,29(14)
                                     INSERT POEHRID
          IC
                                                                      ANL ACT 43542516
                                    MULTIPLY BY FOUR
                12.2
          SLL
                                    IS THIS A NEW MINIMUM FREE AREAANLACT 43543516
          C
                13,16(12,11)
                                                                      ANL ACT
                                                                              43544016
                                    NO NEW MINIMUM
          BNL
                LASTPOE
                                                                              43544516
                                    STORE NEW MINIMUM FREE AREA
                                                                      ANL ACT
          ST
                13,16(12,11)
                                                                      ANL ACT
                                                                              43545016
LASTPOE
          SR
                13,13
                                     IS THIS THE LAST POE ON THE CHANLACT
                                                                              43545516
                13,8(14)
          C
                                                                      ANL ACT 43546016
                                    NO - LOOP BACK
                LOOPPOE
          BNE
                                                                      ANI ACT 43546516
                                    RESTORE REGISTERS
          LM
                10,15, SAVEDRS
                                                                      ANLACT 43547016
                                    SAVE BLOCK NUMBER AND SIZE
                RBLOCK1, RBLOCK
          LR
                                    SAVE BLOCK NUMBER AND SIZE
                                                                              43560015
                RBLOCK1 . RBLOCK
*GDQEBLD LR
```

Update the Source Code for SVC46 with these cards.

•	1.=X.0000000F.	ANL ACT 02895117
BNE	*+8	ANLACT 02895217
LR	4.0	ANLACT 02895317
SR	1,1	ANL ACT 02895417

Update the Source Code for IEAQSY50 with these cards.

```
6,168(XRWTCT1)
                                   LOAD ADDR OF WORK AREA
                                                                     ANLACT 17816616
         1
                                                                     ANLACT 17817101
         L
               4,8(6)
         LA
               5,1(0)
                                                                     ANLACT 17817102
         AR
                4,5
                                                                     ANLACT 17817103
         ST
               4,8(6)
                                                                     ANLACT 17817105
         L
               5, W3OMIN
                                                                     ANLACT 17817112
         S
               5, TQEVAL (XRWTCT1)
                                         CALCULTATE LENGTH OF WAIT ANLACT 17817113
         L
               4,12(6)
                                                                     ANLACT
                                                                            17817200
         AR
               4,5
                                         CALCULATE NEW TOTAL WAIT
                                                                     ANLACT 17817210
         ST
                4,12(6)
                                   STORE NEW TOTAL IN WORKAREA
                                                                     ANLACT 17817220
              3,3
        SR
                                                                     ANLACT 17817230
        SR
              4,4
                                                                     ANLACT 17817240
        IC
              4,59(0)
                                  PUT UNIT ADDR IN REG4
                                                                     ANLACT 17817250
         SRL
               4.4(0)
                                                                     ANLACT 17817260
        LA
              3,3(0)
                                                                     ANLACT 17817270
         CR
               3,4
                                   WAS THIS WAITFOR DISK 1/0
                                                                     ANLACT 17817280
        BE
              DISK
                                  YES
                                                                     ANL ACT 17817290
         LA
               3,4(0)
                                                                     ANLACT 17817300
        CR
              3,4
                                  WAS THIS WAIT FOR DISK I/O
                                                                     ANLACT 17817310
        BE
              DISK
                                  YES
                                                                     ANLACT 17817320
               3,9(0)
         LA
                                                                     ANLACT 17817330
         CR
               3,4
                                   WAS THIS WAIT FOR CELL I/O
                                                                     ANLACT 17817340
         BE
               DISK
                                   YES
                                                                     ANLACT 17817350
DASC
         SR
                                                                             17817360
               3,3
                                                                     ANLACT
         CH
               3,38(6)
                                    ARE ANY DISK EXCPS PENDING?
                                                                     ANLACT
                                                                             17817370
         BE
               CELLEXCP
                                   NO. BRANCH
                                                                     ANLACT 17817380
         LH
               2,38(6)
                                   LOAD NUMBER OF PENDING DISK EXCANLACT 17817390
```

Listings of OS Modifications (Contd.)

	МН	2.DISKTIME	CALCULATE TIME CHARGE FOR EXCP.	SANLACT 17817400
	AR	5, 2		ANLACT 17817410
CELLEXCP	CH	3,36(6)	ARE ANY CELL EXCPS PENDING?	ANLACT 17817450
	BE	JOBTIME	NO	ANL ACT 17817460
	LR	3,5		ANLACT 17817470
	LH	5,36(6)	LOAD NUMBER OF PENDING CELL EX	CANLACT 17817473
	MH	5,CELLTIME	CALCULATE TIME CHARGE	ANLACT 17817476
	AR	5,3	TOTAL TIME CHARGE	ANLACT 17817479
JOBTI ME	L	4.TGESAV(XRWTCT1)	LOAC OLD REMAINING JOB TIME	ANLACT 17817482
	SR	3,3		ANLACT 17817485
	ST	3,36(6)	ZERO PENDING EXCP COUNTERS	ANLACT 17817488
	SR	4.5	SUBTRACT WAIT TIME FOR THIS	ANLACT 17817491
	BH	*+1C	IS THERE TIME REMAINING	ANLACT 17817494
	AR	4,5		ANLACT 17817497
	LR	5,4	THIS WAIT EQUALS TIME REMAINING	GANLACT 17817500
	SR	4,4		ANLACT 17817503
	ST	4, TQESAV(XRWTCT1)	STORE NEW REMAINING TIME LEFT	ANLACT 17817506
	L	4,28(6)	GET STEP FIXED WAIT TIME	ANLACT 17817509
	AR	4.5	ADD WAIT TIME FOR THIS WAIT	ANLACT 17817512
	ST	4,28(6)	STORE NEW STEP FIXED WAIT TIME	ANLACT 17817515
DISK	SR	5,5		ANLACT 17871017
	е	CASC		ANLACT 17872017
	DS	3H		ANLACT 17873017
DISKTIME	DC	X • 0483 •	.03 SECONDS IN TIMER UNITS	ANLACT 17874401
CELLTIME		X'OFOA'	.1 SECONDS IN TIMER UNITS	ANLACT 17875017

APPENDIX D

Listing of the "Time Left" Routine

```
THIS ROUTINE IS CALLABLE FROM FORTRAN OR PLI. IT RETURNS THE
    TIME LEFT BEFORE A JOB IS CANCELLED FOR TIME EXCEEDED. TIME IS
    MEASURED IN HUNDREDTHS OF SECONDS OF CPU PLUS VOLUNTARY WAIT TIME.
TLEFT
          START
                               BRANCH AROUND CONSTANTS IN CALLING SEQ
          В
                10(15)
          DC
                X . 5 .
                CL5'TLEFT'
          DC
          STM
                14,12,12(13)
          BALR
                12.0
          USING *,12
                              LOAD ADDR OF CVT POINTER
                6,76(0)
          L
                6,0(6)
                              LOAD ADDR OF CVT
          L
                              LOAD ADDR OF ACTIVE TCB
          L
                6,4(6)
                              LOAD ADDR OF JOB STEP TCB
         L
                6.124(6)
                              LOAD ADDR OF INITIATOR TCB
         L
                0,132(6)
         LR
                6,1
         LA
                1,15(0)
          SVC
               46
                              ISSUE TTIMER SVC
    TIME LEFT BEFORE JOB IS CANCELLED FOR TIME EXCEEDED IS RETURNED
    IN REGISTER O
         LA
                2,385(0)
         LR
                1,0
         SR
               0,0
         DR
               0,2
                              CONVERT TO HUNDREDTHS OF A SECOND
         LE
               O, NORM
         AL
               1,NORM
         ST
               1, WORK
         AE
               O. WORK
         SR
               0.0
         C
               0,0(6)
         BH
               *+12
         L
               6.4(6)
         STE
               0,0(6)
         LM
               2,12,28(13)
                             RESTORE REGISTERS
         MVI
               12(13), X'FF' INDICATE CONTROL RETURNED TO CALLER
         BCR
               15,14
WORK
         DS
               F
NORM
         DC
               XL4'460000000
         END
```

REFERENCES

- 1. IBM System/360 Operating System Programmer's Guide (C28-6550-5), pp. 39-47 (1968).
- 2. IBM System/360 Operating System System Generation (C28-6554-5), pp. 151-155 (1968).

